Course Type	Course Code	Name of Course	L	Т	Р	Credit
DC	NCEC525	Hydroclimatology for Water Resources Management		1	0	4

Course Objective

The course aims to impart an understanding of the hydroclimatic challenges and techniques to analyze them.

Learning Outcomes

Upon successful completion of this course, the students should be able to:

- understand the connections between hydrology and climate
- Interpret and develop basic hydroclimatic models
- understand the contemporary issues related to climate change

Unit	Topics to be Covered	Contact Hours	Learning Outcome			
1	IntroductiontoHydroclimatology:Hydrology and climate connection: temporaland spatial scales, teleconnections,atmospheric and terrestrial measurements	7L + 1T	To understand the temporal and spatial connections between hydrology and climate			
2	Hydroclimatic data and models: Types of hydroclimatic data products, Exploratory data analysis and visualization, types of hydroclimatic models	7L + 5 T	To know about handling hydroclimatic data products and models			
3	Statistical modelling: Concepts, predictors, introduction to common statistical methods, Time series modeling	12L + 2T	To develop and evaluate statistical hydroclimatic models including time series models			
4	ML based modeling: Introduction to ML approaches, implementation through open-source programming platforms	6L + 4T	To learn the basics of ML approaches in hydroclimatic modeling			
5	Dynamical modelling: concepts, GCMs, downscaling, bias correction, RCMs	7L + 1T	To know the basis of dynamic models and learn to handle GCM products			
6	Recent advances in hydroclimatic studies	3L + 1T	To know about the contemporary global issues related to climate change and its impact on water resources			
	Total Contact Hours	42L + 14T				

Text Books:

- 1. Raju, K. S., & Kumar, N.D. (2018). Impact of Climate Change on Water Resources.
- 2. Karamouz, M., Nazif, S., and Falahi, M. (2012). Hydrology and hydroclimatology: principles and applications. CRC Press.
- 3. Maity, R. (2018). Statistical methods in hydrology and hydroclimatology (Vol. 585). Springer.

Reference Books:

- 1. Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (Vol. 100). Academic press.
- 2. Shelton, M. L. (2009). Hydroclimatology: perspectives and applications. Cambridge University Press.